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AmoTaqHJI--kl3 pemeHLlH conpm~e~soti :Ia~awi TerrnooBMeKa rroKa3aKo,qTo TeMnepaTypa 

IIOBepXHOCTM pa3AeJIa lUIaCTHHa-Hilt~KOCTb RBJIReTCR HeOHaJIHTENeCKOZt 4yHKqkiei% 

paCCTOFIHHaBAOnbnnaCTaH6I,mMeroulenTOYKAReTBjIeHLlRnpMX = OLI CD.OTCIO~aBbITeKaeT 

HeB03MOmHOCTb aIIpkiOpHOr0 3aAaHKR TeMIIepaTypbI IIOBepXHOCTIt, a TaKlKe HeIIplWORHOCTb 

06b1saoro onpeaenesm Koa@*aqneHTa TennooGnreHa (nocnenHee 6bmo oTMe4eHo paKee B 

@yHRaMeHTaJIbHOii pa6oTe [I]). 

transverse component of gas velocity ; 
gas temperature ; 
temperature of the body ; 
gas thermal conductivity ; 
thermal conductivity of the plate ; k 

&, recovery factor ; 

CPY 
specific heat at constant pressure. 

Subscripts 
0, on the plate surface ; 

00, in the bulk of the flow. 

1. STATEMENT AhTD SOLUTION OF THE PROBLEM 

CONSIDER aerodynamic heating of a thin plate 
by a gas flow (Fig. 1). The system of equations for 
a laminar compressible boundary layer is 
written as follows 

NOMENCLATURE 

longitudinal coordinate along the 
plate ; 
transverse coordinate ; 
density of gas ; 
dynamic viscosity of gas ; 
longitudinal component of gas 
velocity ; 

a8 a8 
PUx + PVay 

(assuming that Pr = const., C, = const.) at 
ordinary boundary conditions 

uly=t) = 0, &x, = u,, (4) 

@I,=, = @co($, @I,=, = T,. (5) 

As shown by Chapman and Rubesin [ 11, 
a good approximation of the temperature 
dependence of the viscosity is 

P _=C$ 
Pm OD 

Velocity Temperature 
profile profile 

Variable surface 
temperature U X 1 

ah4 + am) o 

ax F=’ 
1261 

FIG. 1. 
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where 

c= (7) 

t&O is the mean surface temperature; S a 
constant). 

Expression for the plate temperature is as 
follows 

a2T d2T Qb Y) - - _--- s+w- k, ’ (8) 

for example, with conditions 

with the use of conditions (l~)~lZ) in the form 

d’@,(x) 1 W(x) ----_ 
d.u= s kh4(x) = - -7 

k, 
(13) 

where q(?c) is a heat flux through the interface 
plate-flow and W(x) is an averaged source. 

As was shown above W(x) = f W,x’. 
8X=0 

Conditions (9) transform to 

d@,(x) d@,(x) 
dx d.u 

= 0. (14) 
x=0 n=L 

Energy equation (3) may be written in the form 

For a symmetrical flow past a plate 2h thick 
and at Qb, - yl = Qk Y) 

8T 

6 y=-* 
= 0. (101 

Later the function Q(x, y) is assumed continuous 
along x and y and analytic along x. 

At the interface usual conditions hold : 

and 

@(x,0) = e,(x) = 91 + z(x) = 7$=*, (12) 

where Or is the temperature of a heat-insulated 
surface. 

The problem is either to determine the 
temperature of the plate and heat flux through 
it or to find the kind of a heat source Q(x, y) 
necessary for the temperature of the surface 
and heat flux through it to assume the pre- 
scribed values. 

Equation (8) for a thin plate may be written 

Pr 
Z2 - -,(y - 1) M$, (f”j2 (19 

with dimensionless variables 

0. 

T,’ 
f16) 

The new variable q is determined by the relation- 
ship 

where I/I* is a dimensionless stream function 

(17) 

(18) 

and J’(q) - the solution of the Hasius equation 

f”” + f’s’ = 0, (19) 

f(O) = 0, J”(0) = 0, f’(W) = 2. 

The boundary conditions for equation (15) wilI 
be written in the form 

0” (P, 0) = o;(P) = 0: + P(.P), 

0*(X*. co) = I, 
(20) 
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The partial solution of linear inhomogeneous 
equation (15) may be found in the form 

-1 
0*(x*, ?#?) = N(q) = 1 + y+. Mam - d?d? (21) 

where 

Thus the thermal equilibrium temperature is 

[ 

Y-l 
0, =N(O)=T, i+r(O+-Mz, , (23) 1 

where r(O) is a recovery factor 

Solution (21) satisfies the boundary conditions 

@*(x*, 0) = St”, 

&9*(x*, co) = 1, 

a@* o 
~ =: 

% 
at q = 0. (25) 

The solution of the homogeneous equation 

a28* a@* -+ Pr.f’--- 
a@* 

w atl 
- 2Pr jk* ax* - = 0 (26) 

may be found by the method of separation of 
variables. Assuming 8 * = X(x*)Y(q), we obtain 

&(Y” I- Pr.f’Y’) = 2Prl*.$=const. (27) 

Assume the separation constant equal to 2Pr. p, 
where p = an, an + p, an -t y (n = 0, 1, 2,. . .)_ 
Choice of numbers g j?, y > 0 will be shown later. 

From equation (27) we have 

x,(x*) = x*p. (28) 

The functions Y&q) are determined from the 
equation 

Y;: + Prj‘Yp - 2P@‘py, = 0 (29) 

and should satisfy the boundary conditions 

ypco) = 1, Y&00) = 0 (30) 

(whether such solutions exist will be established 
later). 

Equation (26) is linear. Therefore summation 
of the solutions of the form 

(where 4, pn, qn are some constants) yield the 
solution to equation (26) 

@*(x*9 9) = $ l!v&?) + PnL+&‘lY 

+ tLym+,ttl) x*‘l x*w, (32) 

satisfying the boundary conditions 

8*(x*, 0) = f [lg + p,x*b + qnx*q x*m, 
n=O 

8*(x*, co) = 0. I (33) 

Thus, the complete solution to the energy 
equation is 

@*(x*,?) = we?) + “iO ra-&l) 

+ P"~m+jM~ *@ + qnYm+y(?j)x*y]x*m (34) 

and it satisfies the boundary conditions 

63; s 8*(x*, 0) = i [a, + p*x*@ + 
n=O 

8*(x*, co) = 1, 

where 

f q&*Y] x*w, (35) 

U. =” 6: + a’,, at n = 1,2,. . . 

The determination of the coefficients a, p., 
q. is conducted using equation (13). First the 



1264 A. V. LUIKOV, T. L. PERELMAN, R. S. LEVITIN and L. B. GDALEVICH 

expression for the heat flux in terms of dimen- where 
sionless variables is written down. Since B,L? 

B=--, v(x*) = - 
w(Lx*). z? 

q(x) = - k,(@)~ 
[ 1 k,Tmh k T s m 

8Y y=o 

kT 
(42) 

= -=.c, 
2 Thus according to (34) and (35) the temperature 

of the plate surface, i.e. the solution to equation 

+ P,yh,+@)X *fi + Cj”Yk,,(O) X*y] X*rm, (36) (41) is sought in the form 

m 

where 8,*(x*) = c (a, + J&x*@ + q”X*Y) x*m. (43) 
n=O 

C,(x) = (37) When substituting (43) into (41), it is noted 
that in order to obtain the identity it is necessary 

then, in terms of dimensionless variables of (16), that the numbers an, an + j?, GUI + y form a 
commutative additive semi-group including all and with 

G,(x*) = 

where 

non-negative integers. Therefore 01 = $ is 

[8:(x*)] . l + G -- 
assumed. Then fl = 4, y = 1. Hence equation 

0:(x*) + G’ (38) (43) may be presented in the form 

s: = f (a, + pnx*+ + q”X*) x*+“. (44 
n=O S 

CI=T’ m Let S, be the coefficients of some power series 

one gets 

4(x*) = 

where 

2 [ti”Yrn(0) + p,Y&,+&O) x*8 + qnYm+jO) x*7] Pm 
n=o 

8:(x*) + G 
3 (39) 

with fractional powers of x obtained by multi- 
plying the power series of the same type by the 
coefficients M, and R,. Denote 

(40) S, = Q’V,), 

where 
Finally equation (13) in dimensionless co- 
ordinates takes the form S, = f M,R,_,, (n = 0, 1,2,. . .). 

n=o 

(45) 

f [i,Y~(O) + p,Yh,+8(o) x*p + qnYb,+JO) x*7] X*M 

0:(x*) + G 
= v(x*), (41) 
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Then (41) yields the recurrent reIationships 

4n(% - 1)~ + B G&-A-J + iii-zQ.-d + 6iA’,-,~l 

i 

vrfn- a if &t-2) =+2; 
=: 

0 if [-=_n - 21 = +I - 2. 

($n + %$n - 4)p, + B[(ik,-h- 11 + G%-&,-,I + 6in-,Q,-~11 

! 

‘I/ttw if &r--33 =+--2; 
= 

0 if [+r - 31 = $? - 3. 

3n (% + I) 4” + B [(p,- ,P,- 11 + (%-1A,- 11 + 6% sQn- 111 

where Zi, p, 4, are 
current relationships 

%n- 11 if [+n-l]=Qn-1; 
= 

0 if [$n - I] * $n - 1, 

determined from the re- where (?1, = a, + G, iik = uk, k k 1. 
In all the recurrent relationships the sum- 

mands containing negative subscripts are con- - - 
sidered equal to zero. 

The analysis of equations (4’7) shows that the 
coefficients 69:(x*) : 

(47) 
ai,a2,.., ;po,pl,..~ ;th,c12,... 

are sought in terms of a,, go, of coefficients of 

1 m 

c 

source V, and of values 
% f =-. 

-J,j 

(3k - m, %,j cm-, jt (48) 

k=l qm y;,+&% q,+ 1(O) 

(m= 1,2 ,... ;j= 1,2,3), 
(n = 0, 1,2,. . .). 

where co,j = Zi~,j; G&,1 = 9; si,,z = Fk; Zig,3 = Conditions (14) give two equations for deter- 
&, k = 0, 42, . . . , and A, P,, and Q,, are deter- mination of a, and q. (from the recurrent 
mined from the recurrent relationships equations (47) p0 = 0): 

d.x* s*‘=o = ” = 0, 

4nY;.+ m = fPAZ + ht&l + ($n + 1) q"] = 0. 
-t- @,Q.h Let us write out the first twelve coefficients 
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of the function ez (here Y,(O) = rP) 

a _ _ 4B&~e Ja, 
1- 

3ii, ' 

B 
a3= --..---- 

126@a$ 

p* +; 

BV, _ 
p2 = - 35$4 - E~oYo@o - &o) f 2aor211 

40 = 41 = 0, 

v, 
q2 = 12’ 

43 = & wo~oGoYo - 3oY2) 

+ ioii$yo + 8ai(y,ii, - yofio)] pf 

+ ~o~oE2ao(~oyo - 20~4) - ~o~o~ol q2f. 
If at large x the source is described by whole 

negative powers of x (i.e. V = ng KY), then 

where n = 0, - 1, -2, . . . . Then in equations 
(33)-(43) it should also be considered that 
n=O, -1, -2, . . . . It is seen that at rather 
large n the solution for 0: is formally found in 
the form 

@CT, ="z(a. + pnPf + qnx*)x*tR. (52) 

Here the recurrent relationships remain valid 
and the note that the summands with negative 
subscripts should be equated to zero no longer 
applies. It should be remembered here that YP 
are already different, since p attains the values 

$n, &n++ and $-t-l, where n=O, -1, 

-2,.... 
Equations (51) remain valid if the signs of all 

the subscripts are reversed. In equation (48) the 
sumistakenfromk = -1 tomwherem= -1, 
-2 ,.... 

2. DEMONS~~ON OF THE CON~RGENCE 
OF SERIES (44) 

It is important to show that series (44) is 
asymptotic and moreover converges at small 
Jx 1. For this purpose Wiener’s assumption is 
used that if the function x(q) can be expanded 
into an absolutely convergent Fourier series 
and does not become equal to zero, then I/.x&) 
can also be expanded into an absolutely con- 
vergent Fourier series. His Tauberian theorem 
[2-4] and fractional power of closed operators 
will also be used. 

Let X represent a B-space and (K;; t 2 0) 
c I_(X, X) a continuous semi-group of class 
(Co) of equal powers. Let us further introduce 
the function 

o+im 
r 

ezA-tz’dz at I > 0, (53) 

at L < 0, 

where a > 0, t > 0, 0 e c1 c 1 and also the 
@*(x*, rj) will be sought in the form of (32) branch z”chosen so that Re(z”) > Ofor Be(z) > 0. 
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This branch is a single-valued function in a 
complex z-plane with a cut along the negative 
section of the real axis. Following Bochner [5] 
it may be shown that the operators determined 
by equations 

i 

m 

L&x s ?& = d j;,oXs)T,~ds at t > 0, 

(54) X at t=O 

represent continuo~ groups of class (C,) of 
equal powers and the operator family (%I forms 
a holomorphic semi-group. It appears here 
that the infinitesimal producing operator A = 2, 
of the semi-group {T,) is related to the infmitesi- 
ma1 operator of the semi-group (T,) by the 
equation 

A.& = -(-A)% for all x E D(A),? 

where the fractional powers (-A)” of the 
operator (-A) are determined by the equality 

(-A)% = l-(-cc)-‘iA-‘;‘(T, - I).u:dA, 

x o WA), (55) 

and the form of the resolvant of the operator A;i, 
was obtained by Kato [6]. 

Further if substitution 

xy’ - y 
z = ---Y-- X ’ 

is made into (41) it is not di~cult to show that 
series (44) converges at small (xl, since it 
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becomes clear that in this case the Hukuhara 
theorem holds [7] on the existence of a fixed 
point in the functional space. 

It is now clear that the temperature of the plate 
surface is not an analytic function of whole 
powers of x in the vicinity of the point (0.0). 

3. HEAT TRANSFER COEFFICIENT 

In the case of variable surface temperature 
the heat-transfer coefficient is determined by the 
formula 

4 a = 0,(x) - 0,’ 
(56) 

For the calculation of ol, the earlier obtained 
expression q(x*) : 

+ qnx* y;,+ JO)] x**. 
is compared with the equality 

q(s*) = aT, [#;(x*) - @f]. 

Taking into account that 

z. = @*(o,o) - sl”, 

PO = go = 0, 

gives 

a =a. G(x*) [@*to, 0) - @:] 
c[e:(x*) - 071 

kc&&x*) 

t D(A) i-3 the range of the infinitesimal producting where a is heat-transfer coefficient at 8, = 
operator of the semigroup ( T,}. const. 
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4. CALCULATION OF EIGENFUNCTIONS Y,(q) 

According to [l] the functions of temperature 
distribution Y,(q) are found by integration of 
equations 

Yl + Pr J’Y; - 2Pr nf”< = 0 (58) 

at boundary conditions 

y,(O) = 1, y,(a) = 0, (59) 

where n = 0, 1, 2, . . . and f’(q) and f”(q) satisfy 
the Blasius equation (19). 

In [l] it has been noted that for large q, 
f’(q) approaches a linear function and f”(q) 
approaches a constant. For q > 4.1 within the 
accuracy of four decimal places 

j’(q) = 2(rj - O-86038), (60) 

J’(q) = 2. 

It has also been noted in [l] that while 
solving equation (58) cumbersome calculations 
may be avoided if its asymptotic solution is 
found. However, the general asymptotic solu- 
tion given is not good enough for the boundary- 
value problem, (58) and (59). 

Consider equation (29) 

Yi + Pr f’Y6 - 2Pr pf”Y, = 0, (61) 

where p is any real number 

f’(V) = a(rl - b), 

J”(V) = a, (62) 

where a > 0 and b are any real numbers and the 
boundary conditions are of the form 

Y,(O) = 1, Y&o) = 0. (63) 

Under these conditions the existence of the only 
solution satisfying the boundary conditions (63) 
may be demonstrated (when p > 0). Substitution 

x = (,/Pr)(q - b) (64 

leads to 

Yi + axYb - 2pa YP = 0. (65) 

By applying successive substitutions to (61) 

ax2 
Yp = exp - -4- .zP, 

( > 
v = gy (66) 

the equation 

y’ + p - = 0 (67) 

is obtained. 
Finally, substitution 

gives 

V = -a; + G(x) (68) 

G’ = 2ap - axG - G2. (69 

It may be shown that there exists a family of 
solutions to (69) which may be represented by 
an asymptotic series 

G(x) N h, + h,x-’ + h,x-’ + . . . 

(x + cc). (70) 

To be more correct, such x0 >- 0 and N ;- 0 can 
be found that for Go E [-N, N] the solution 
with the initial condition G(;(x’) = G may be 
infinitely continued to the right and is represented 
in the form of(70). Here ho, hi., . . , do not depend 
on Go. These solutions are asymptotically 
steady according to Lyapunov. 

For (69) series (70) will be a series of odd 
powers (h2m = 0, m = 0, 1, 2, . . .). The recurrent 
relationship for the coefficients of the series is 
of the form 

ah 2n+1 = W - l)hzk-1 

- ,+FEk_ 1 hzm+ +tp+ 17 (71) 

m,p=0,1.2... 

where k = 1,2, . . . and h, = 2p. 
Thus, for example, 

h3 = ;2p(l - 2p), 

h, = -$2p(l - 2~) (3 - 4~). 
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So, for (65) there exists a family of solutions 
represented by the asymptotic series 

Yp N cxZP(l + r1,X-2 + r&4 + . . .), x + co, 

where formally 

1 f r,t + r,P + * I). 

Now, on application of substitution 

V =-- “;’ 4” G(x) 

to (71) 

G’ = a(1 f 2~) + uxG + GZ. 

(72) 

(73) 

(74) 

(75) 

It may be shown that equation (75) possesses 
only one solution G(x) which is represented 
by the asymptotic series 

G(x) N 1, + I,x- l + I,x-~ + . . .(x + co), (76) 

and this solution is unsteady and is the only one 
withintherangex”<x<co. 

When applied to equation (65) this means that 
within the accuracy of C = const. # 0 the only 
solution exists of the form 

a2x2 
Y, N cx-(i+2P)exp - 2 ( > 
. (1 + s1f2 + s2x--4 + . . .), x -+ co, (77) 

where formally 

1 4” s,t f s2t2 + . I. 

( 13 15 2 gexp -Zt-‘;Ft 
J 

-II.. . (78) 

Series (76) contains only odd powers of x(l,,,, = 0, 
m = 0, 1, 2, . . .). I, = - (1 + 2~) and co- 
efficients 12r+i, k = 1, 2, . . . are determined 

from the recurrent relationship 

al,,+, = - (2k - 1) f,, _ 1 

- ,+;E_, ~2m+l~Zp+1* (79) 
m.p=0,1,2... 

For example, 

I3 = - 2&I + 2P) 
a ’ 

15 = 
-2p(l + 2p)(l - 4p) 

a2 ’ 

Since it is evident that any solution to I$, 
from the family (70) and solution to Y#, of the 
form (77) are linearly independent then the 
general solution of (65) is of the form* 

r,= C, r,, + CZY,,. 

Hence it is clear that the f~lment of the 
boundary condition (63) yields C, = 0 (at 
p 3 0). Therefore the asymptotic solution of 
equation (65) is presented in the form 

a2x2 
& = x-(1+2P)exp - 2 ( > 

(1 + SIX-2 + s2x-4 + . . .), x * 00. (80) 

Yp being found from the above equation, 
numerical integration may be started to deter- 
mine Y&O). 

5. DISCUSSION 

In conclusion let us emphasize an impo~nt 
finding from the solution of the conjugated 
problem (1)-(12). In work [l] by Chapman and 
Rubesin the surface temperature is set in the 
form of Taylor series in terms of powers x. The 
solution to the conjugated problem shows that 
this is incorrect because the surface temperature 
is not an analytic function of x, except in some 
trivial cases, but has its particular point at 
x = 0. Hence it follows that the surface tempera- 
ture cannot be prescribed if it is variable. 

* The general asymptotic solution of equation (1) is 
obtained for any large x and any real p. 
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The heat-transfer coefficient is determined 
by equation (5’7) in which the coefficients 
a, pm qn and, therefore, the surface temperature 
63,(x) are found from the above solution of the 
conjugated problem. 
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Ahatraet-It is shown by the solution of a conjugated heat transfer problem that the temperature of the 
interface plate-liquid is a non-analytic function of the distance along the plate with the branch points at 
x = 0 and co. Hence it follows that an II priori assumption of the interface temperature is impossible and 
the ordinary determination of heat transfer, which has been pointed out earlier in [I], is inapplicable. 

TRANSPORT DE CHALEUR A PARTIR DUNE PLAQUE DANS 
UN BC~ULEMENT GAZEUX COMPRESSIBLE 

R&OIII~ montre, g&e a la solution d’un probl&ne. de transport de chaleur conjugue, que la tempera- 
ture de l’interface plaqueliquide est une fonction non-analytique de la distance le long de la plaque avec 
des points de. branchement a x = 0 et co. Il s’ensuit done qu’une hypothb a priori sur la temperature de 
l’interface est impossible et que la d&ermination habituehe du transport de chaleur, qui a ete signale 

auparavant dans [l], est inapplicable, 

WARMEUBERGANG VON EINER PLATTE IN EINER KOMPRESSIBLEN 
GASSTROMUNG 

ZlLSd -Auf Grund der Liisung eines konjugierten W%rmetibergangsproblems wird gezeigt, 
dass die Temperatur da Zwischenschicht zwischen Platte und Flilssigkeit eine nicht-analytische Funktion 
der Entfernung auf der Platte ist, mit Verzweigungspunkten bei x = 0 und 00. Daraus folgt, dass eine a 
priori Annahme Rir die Zwischenschichttemperatur unmiiglich ist und die iibliche Berechmmg des 

WBrmeilbergangs, wie sie in [l] angedeutet ist, nicbt durchgeftitmrt werden kamt. 


