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AunHoTanua—U3 peineHus CONpsHeHHON 3a3a4K TeII006MEeHa MOKA3AHO, YTO TeMIepaTypa

TIOBEPXHOCTH  paspgeta

IAACTHHA-HUIKOCTH

ABIAETCA HEOHAJMTHUYeCKOUW  QyHKuMen

PaCCTOAHUS BAOJb IIACTHHEL, HMEoLIel TOUKH BeTBIeHNA Npu X = O u 0. OTCl0AA BhHTEKAET

HEBO3MOMKHOCTb ANPMOPHOTO 3aJaHUA TEMIEPATYpHl MOBEPXHOCTH, A TaK#ie HEIPUTOTHOCTD

oGbuHOro ompenesennd KosdduuueHTa TeroodMeHa (IociefHee OLIIO OTMEYEHO paHee B
dyupamenranbHoit pabore [1]).

NOMENCLATURE

X, longitudinal coordinate along the
plate;

¥, transverse coordinate;

P density of gas;

78 dynamic viscosity of gas;

u, longitudinal component of gas
velocity ;

v, transverse component of gas velocity;

©,  gas temperature;

T, temperature of the body;

k;,  gas thermal conductivity;

k,  thermal conductivity of the plate;
recovery factor;

¢,  specific heat at constant pressure.

Subscripts
w, on the plate surface;
o0, in the bulk of the flow.

1. STATEMENT AND SOLUTION OF THE PROBLEM
ConsiDerR aerodynamic heating of a thin plate
by a gas flow (Fig. 1). The system of equations for
a laminar compressible boundary layer is
written as follows

é’f + _a_lf = i g'f (1)
-re ””ay T ay #ay ’
opu) | O(pv)
arsr _ )
T T 2 0, (2

ua—@+ vB_Q
Plax TP dy

1 0 (08 pfou)
‘ﬁ?a?(“‘a?)*‘c:(@) G

(assuming that Pr = const, C, = const) at
ordinary boundary conditions

u|y=0 =0, u|y=oo =U,, )

Bl,-0 = 6,(x), Ol =T,. (5

As shown by Chapman and Rubesin [1],
a good approximation of the temperature
dependence of the viscosity is

U (o)
—=C—, (6)
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where

ON\NT, +S
C= /{2e) =" 7
J@ens o
(@, is the mean surface temperature; S a
constant).
Expression for the plate temperature is as
follows

*T  &°T Q(x, )
wry Ty ©
for example, with conditions
éT oT
—a—;x=0 _E;FL =0 ®

For a symmetrical flow past a plate 2k thick
and at Q(x, —y) = Q{(x,y)

= 0.

y==h

F (10)

Later the function Q(x, y) is assumed continuous
along x and y and analytic along x.

At the interface usual conditions hold :

00
(ro3)

O(x,0) = O,(x) = 0, + 1(x) = T}y, (12)

oT
= —kré;

(11

y=0 y=0

and

where @, is the temperature of a heat-insulated
surface.

The problem is either to determine the
temperature of the plate and heat flux through
it or to find the kind of a heat source Q(x, y)
necessary for the temperature of the surface
and heat flux through it to assume the pre-
scribed values.

Equation (8) for a thin plate may be written
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with the use of conditions (10)+{12) in the form

d?0,(x) 1

Wi
52 T Rpi = - ()

k, ’
where g(x) is a heat flux through the interface
plate-flow and W(x) is an averaged source.

(13)

As was shown above W(x) = ), W,x"
n=0

Conditions (9) transform to

4@ ,(x) 4o, (x)
= = Q. 4
ax Jeeo ¥ e (14
Energy equation (3) may be written in the form
’O* oe* o0e*
—— = = 2Pr f'x* ——
e -%—IE’rfé’7 rfx@x*
Pr .
= - ‘Z(? - DML (/M (15)
with dimensionless variables
¥ —‘i o 79.
X I e T {16}

The new variable # is determined by the relation-
ship

amn

{18)

and f(n) — the solution of the Blasius equation

17+ =0, (19)

fO =0 f(O=0 flec)=2

The boundary conditions for equation (15) will
be written in the form
O* (x*,0) = @%(x*) = @F + t*(x"),
( i 20)
O*(x*, w0}y = 1.
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The partial solution of linear inhomogeneous
equation (15) may be found in the form

O*x*n) =N =1+ 2-’—~1.M§o.r(n), 21

2
where
® 4
nn) = I—ZKJ W3] j [FO1>"7dide. (22)
] 4

Thus the thermal equilibrium temperature is

y—1

@, =N0=T, [1 + r(O)——z———Mfo], (23)

where r{0) is a recovery factor

o 4
n0) =1—;_£J Lfen™ di( X Lfem1>™ dﬂ)- 24
0 [}

Solution (21) satisfies the boundary conditions

O*(x* 0) = Of,
O*(x*, 00) = 1,
*
90" 0 at n=o (25)

The solution of the homogeneous equation

o*e* + Pr fii@* o0e*
on? ooy ox*
may be found by the method of separation of
variables. Assuming 8* = X(x*)Y{#), we obtain

=0 (26

- 2Pr f'x*

’

1
}_-;?(Y" + Pr. fY)=2Prx* .%i,—-—-const. 27
Assume the separation constant equal to 2Pr . p,
where p=anon+ fon+y n=0, 1, 2,...).
Choice of numbers a, §, 7 > 0 will be shown later.
From equation (27) we have
X (x*) = x*P, (28)
The functions Y,(n) are determined from the
equation

Y, + PrfY, — 2Prf'pY, =0  (29)
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and should satisfy the boundary conditions

Y,0) =1, Y, (0) =0 30)
{whether such solutions exist will be established
later).
Equation (26) is linear. Therefore summation
of the solutions of the form

a,x*" . Yo (n),
pnx*m+# . Yan+ﬂ (’7)&

q”x*an+ ' . Ym«l-y ('1)

GD

(where a,, p,, g, are some constants) yield the
solution to equation (26)

O*x*m) = 3, [ Yuln) + [ A U) g
+ gu Yoy () ¥ x*, (32)
satisfying the boundary conditions
O*x*,0) = Y [a,+ px* + g, x*] x*,
n=0
33
O*(x*, o0) = 0.

Thus, the complete solution to the energy

© equation is

&t 1) = Na) + 3. [aYult)

+ PaYons gX* + @Y DX¥]x*" (34)
and 1t satisfies the boundary conditions
0 = 8*x*,0) = io [a, + pox** +
" + g x*7] x*, (35
O*(x*, ) = 1,
where

e

4 = -
a, L OF + a,, a, = a, at n=12,...

The determination of the coefficients q,, p,,
q, is conducted using equation (13). First the
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expression for the heat flux in terms of dimen-
sionless variables is written down. Since

e
40 = — [kf(@) 5]
)fo [, Y.40)

) 'Cw\/<v®xC

+ PuYon s pOX* + , Y04 (0) x*7] x*, (36)

O, T, +S
can =[] 25

then, in terms of dimensionless variables of (16),
and with

where

1+G
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where
B, o W(x®. I
BN
Sy v--Ew @
=, I T,

Thus according to (34) and (35) the temperature
of the plate surface, i.e. the solution to equation
(41) is sought in the form

«©

2 (a, + px* + g,x*) x*. (43)
n=0

65(x*) =

When substituting (43) into (41), it is noted
that in order to obtain the identity it is necessary
that the numbers an, an + f, an + y form a
commutative additive semi-group including all
non-negative mtegers Therefore « =3 is
assumed. Then f =4, y = 1. Hence equation
(43) may be presented in the form

OF = Y (a, + px** + g x*) x*". (44)
n=0

Let S, be the coefficients of some power series

*y *f ok N
Gw(x ) - [Qw(x )] @x(x*) + Gs (38)
where
S
G = T
one gets

Yiorl0) + PoYin15(0) X* + g, Y 1 (0) x*7] x*

)] 3 14,
.n=0

OX(x*
4 = - B\/[ =

ONx+ G ’ (39)

where

kT, (1 +G) U,
B, = > '\/<vaC>' (40)

with fractional powers of x obtained by muiti-
plying the power series of the same type by the
coefficients M, and R,. Denote

S, = {M,R,}, (45)
where
Finally equation (13) in dimensionless co- n
ordinates takes the form =Y MR,_,,(n=0,1,2,..).
k=0
d63 \/[@;(x*)] 2, Y0+ 2 YO+ X O
_3;17+B - . 671" 7 G (x*), (
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Then (41) yields the recurrent relationships
%n (%n - 1) ay + B [{au— 1An~ 1} + {En-lQn-d} + {-én-2Pn-2}] )
Vign~21 if Bn~2]= 3n-2;
o if Bn-20=3-2
(%n + %) (%n - %) Dn + B[{En-— IAn—l} + {ﬁn~1pn—1} + {an—2Qn~2}]
Vign-3 if Bn—431=43n-13; (46)
0 if Bn-3=4-3%
%n (%n + 1) qn + B [{;’n—lpn*l} + {ar-lAn—l} + {an—IQn-l}]
I/[-}n-l] if [%n - 1] = %n -1;
0 if Bn—-1]l=3n-1, J

where @, p,, g, are determined from the re-
current relationships

G, = Cpy t+ 2{51&-51 an—l};

Pan=Cpy,3 Tt 2{5;1;:{}! L@
q, = cn,Z + 2{En-én}’
n=012..),
m i z (3k m) Ay, j Cm—x, j» (48)
m=12...j=123)
thefe Co,j = atz),j; G,y = 4,; 53,2 = Ex; Gy 3 =
d.k=0,1,2,..., and 4, P, and Q, are deter-
mined from the recurrent relationships
a Y!in(o) {a A } + {pn 1 Qn 1}
+ {th IPn— 1}’
PnY;n-%}(O) = {pnAn} + {anPn}
+ {Qn—lQn—l}’ (49)

{PPs} + {924,}
+ {3,Qu}s

4a Y3+ 1(0) =

where d, = a, + G, 4, =a,, k=2 1.

In all the recurrent relationships the sum-
mands containing negative subscripts are con-
sidered equal to zero.

The analysis of equations (47) shows that the
coefficients @%(x*):

23,82, sPosPys- -+ 341,925« - -

are sought in terms of a,, gq,, of coefficients of
source ¥, and of values

«'i-a(o)’ 'iu + 4}(0)9

n=0,12..)

Y’%n + 1(0)

Conditions (14) give two equations for deter-
mination of a, and ¢, (from the recurrent
equations (47) p, = 0):

de}
dx* |, =9 =0
(30)
de;
dx* Z [Znan + (%n + i) pn

+@Gn+ g, =0.

Let us write out the first twelve coefficients
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of the function 8} (here Y,(0) = y,)
4. = 4Bao?o v ao
! 3d,

Vi

az - “6“
+ Bayy,[agyold, — 2“0) + 2aoaoyi]
943
B

%= T 126333

{4doao[2a0doy; + Vololde — 2a0)] a,

+ [45(2)“0}’; — daydodgyy — d5ag7,

- 8a(2,(§o'y* - ﬁo?o)] a%}’
Po =0,
W 51
p=b (51)
BY, ._ .
p; = — B“ggg%g [3070(@o — 2a0) + 2447,

Vs 1 a2rna
Py =755~ 23 [{3a5[2apa0(ys + v2)

—agyolday + d,)] a;

+ 1650‘133?0(?450 — 25,7260} Py

+ 6aodz [a3 + 2al@oy; — Goyo)l P21,
qO = ql = Oa
V,
4, = 1—2-9
B
q; = 19843 3{[4‘“0“0(“0')’0 — dg¥2)

+ a,8%70 + 8ad(280 — Vodo)] P
+ 4aydo[2ag(@gy — dgYs) — @odoYol 42}
If at large x the source is described by whole
negative powers of x (ie. V = Z ¥, x", then
O*(x*,n) will be sought in the “form of (32)
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where n =0, —1, —2, .... Then in equations
(33)(43) it should also be considered that
n=0 —1, — . It is seen that at rather
large x the solution for @} is formally found in
the form

-0
= Y (a, + p,x*t + g, x*) x*¥", (52)
n=0
Here the recurrent relationships remain valid
and the note that the summands with negative
subscripts should be equated to zero no longer
applies. It should be remembered here that Y,
are already different, since p attains the values

3n, 3n+4 and 3n+ 1, where n=0, —1,
-2,....

Equations (51) remain valid if the signs of all
the subscripts are reversed. In equation (48) the
sum is taken from k = —1 tom where m = —1,
-2, ...

2. DEMONSTRATION OF THE CONVERGENCE
OF SERIES (44)

It is important to show that series (44) is
asymptotic and moreover converges at small
|x|. For this purpose Wiener’s assumption is
used that if the function x(¢) can be expanded
into an absolutely convergent Fourier series
and does not become equal to zero, then 1/x(¢p)
can also be expanded into an absolutely con-
vergent Fourier series. His Tauberian theorem
[2-4] and fractional power of closed operators
will also be used.

Let X represent a B-space and {T;; t > 0}
< L(X, X) a continuous semi-group of class
(C,) of equal powers. Let us further introduce
the function

atiw

1
Jo. dA) =4 2mi
0 at

j efA"t2*dz  at 220,

a—io

(53)
A<0,

where a> 0, t >0, 0 <a <1 and also the
branch z* chosen so that Re(z®) > Ofor Re(z) > 0.
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This branch is a single-valued function in a
complex z-plane with a cut along the negative
section of the real axis. Following Bochner [5]
it may be shown that the operators determined
by equations

[ £,d9Txds at ¢ >0,
. (54)

X at t =0

represent continuous groups of class (C,) of
equal powers and the operator family {T;} forms
a holomorphic semi-group. Tt appears here
that the infinitesimal producing operator 4 = A,
of the semi-group {T;} is related to the mﬁnltesx-
mal operator of the semi-group {7;} by the
equation

Ax = —(—Ax x e D(A),t

where the fractional powers (—A4)* of the
operator (— A) are determined by the equality

X = Tx=

for all

(—A’x =T(—o) ! Ti““"l (T, — Dxdj,
]

xeD(4), (55

and the form of the resolvant of the operator 4,
was obtained by Kato [6].
Further if substitution
xy' — A

2 3

is made into (41) it is not difficult to show that
series (44) converges at small |x| since it
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becomes clear that in this case the Hukuhara
theorem holds [7] on the existence of a fixed
point in the functional space.

It is now clear that the temperature of the plate
surface is not an analytic function of whole
powers of x in the vicinity of the point (0.0).

3. HEAT TRANSFER COEFFICIENT

In the case of variable surface temperature
the heat-transfer coefficient is determined by the
formula

_ q
ECXCETN 9

For the calculation of o, the earlier obtained

expression g(x*):
m( *) \/ ( Lx* C)

[a Y}n(o) + DX **Y-}n+-i~(0)
+ 4 Va1 (O] x4

is compared with the equality

q(x*) =

=fs[;qe

q(x*) = aT, [O%(x*) — 6}].
Taking into account that
ay, = 0*0,0) - O},

Po=40o=0,
gives

o= Cl) [6*0,0) - 61]
=T Cler) - 6F]

k. C. vc*)\/(

(57

) [2,Y3,(0) + ppx*#Y},44(0) + gyx* Yy (0] x*¥

2[05(x*) — 6}] '

t D(4) is the range of the infinitesimal producting
operator of the semigroup {7;}.

where o is heat-transfer coefficient at 8, =
const.
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4. CALCULATION OF EIGENFUNCTIONS Y,(n)

According to [1] the functions of temperature
distribution Y,(n) are found by integration of
equations

Y, + PrfY,—2Prnf'Y,=0 (58)
at boundary conditions
Y0 =1 Y(x0)=0, (59

where n =0, 1,2, ... and f(n) and f'(n) satisfy
the Blasius equation (19).

In [1] it has been noted that for large 7,
f(n) approaches a linear function and f’(n)
approaches a constant. For # > 41 within the
accuracy of four decimal places

f(n) = 2(n — 0-86038),
S =2

It has also been noted in [1] that while
solving equation (58) cumbersome calculations
may be avoided if its asymptotic solution is
found. However, the general asymptotic solu-
tion given is not good enough for the boundary-
value problem, (58) and (59).

Consider equation (29)

(60)

Y, +PrfY,—2Prpf'Y,=0, (61)
where p is any real number
fn) = aln = b),
S =aqa (62)

where a > 0 and b are any real numbers and the
boundary conditions are of the form

Y0 =1 Y[(0)=0 (63)

Under these conditions the existence of the only
solution satisfying the boundary conditions (63)
may be demonstrated (when p > 0). Substitution

x=(/PN(n—b) (64)
leads to

Y, + axY, — 2paY, = 0. (65)
I4 14 P
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By applying successive substitutions to (61)

ax? z,
Y = el V=22
» = €Xp ( 4 )zp, 2 (66)
the equation
2,2
v+ VZ—(-“—i"—+f+2ap) =0 (67)
4 2
is obtained.
Finally, substitution
V= “2—" + G(x) (68)
gives
G =2ap — axG — G~ (69)

It may be shown that there exists a family of
solutions to (69) which may be represented by
an asymptotic series

G(x) ~hy + hyx ' + hyx™2 + ..

(x> ) (70)

To be more correct, such x° > 0 and N > O can
be found that for G°e [—N, N] the solution
with the initial condition G(x°) == G may be
infinitely continued to the right and is represented
in the form of (70). Here hy, h;, . . . ,do not depend
on G° These solutions are asymptotically
steady according to Lyapunov.

For (69) series (70) will be a series of odd
powers (h,,, = 0,m =0, 1, 2, ..). The recurrent
relationship for the coefficients of the series is
of the form

ahyry = 2k = Dhy,

(71)

h2m+1h2p+la
m+p=Kk—1
m,p=0,1,2...

where k = 1,2,...and h; = 2p.
Thus, for example,

1
hy = ;21 = 2p),

1
hs = —52p(1 — 2p) (3 — 4p).
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So, for (65) there exists a family of solutions
represented by the asymptotic series

Y, 2 ex?(1 +r,x 2+ rpx7 + ), x> oo,

(72)
where formally
L+rt+rt2+...
Lexp (- Mo -lop 7
-—exp( 2t 4t ) (73)
Now, on application of substitution
V=-S+46( (74)
to (71)
G’ = a(l + 2p) + axG + G~ (75)

It may be shown that equation (75) possesses
only one solution G(x) which is represented
by the asymptotic series

G(x) > Iy + Lix™ 4+ Lx™2 + ... (x = ), (76)

and this solution is unsteady and is the only one
within the range x° < x < .

When applied to equation (65) this means that
within the accuracy of C = const. # 0 the only
solution exists of the form

2.2
a’x
-{1+2p) il
Y, ~cx exp( 3 )

L+ 5x72+5,x7%+..), x> o, (7

where formally

1+ st + 882 + ...

H o (B 52
—exp( 2t 4t

)

Series (76) contains only odd powers of x(I,,, = 0,
m=0 1, 2 ..) I, =-(1+2p) and co-
efficients I,,.,, k=1, 2 ... are determined
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from the recurrent relationship
alyry = — @k = Dy,

- Z Lam+ s l2p+1‘ (79)
mip=k—1
m,p=0,1,2...
For example,
2p(1 + 2p)
= -2,
a
-2p(1 + 2p)(1 — 4p)
15 = 2 .

a

Since it is evident that any solution to Y,
from the family (70) and solution to Y, of the
form (77) are linearly independent then the

general solution of (65) is of the form*
Y, =CiY, + Gy,

Hence it is clear that the fulfilment of the
boundary condition (63) yields C, =0 (at
p 2 0). Therefore the asymptotic solution of
equation (65) is presented in the form

a*x?
>)

(1+sx 2+ 5,x"%+..),

Y’p = x“‘(l“‘zp)exp (._

x— . (80)

Y, being found from the above equation,
numerical integration may be started to deter-
mine Y,(0).

5. DISCUSSION

In conclusion let us emphasize an important
finding from the solution of the conjugated
problem (1)-(12). In work [1] by Chapman and
Rubesin the surface temperature is set in the
form of Taylor series in terms of powers x. The
solution to the conjugated problem shows that
this is incorrect because the surface temperature
is not an analytic function of x, except in some
trivial cases, but bas its particular point at
x = 0. Hence it follows that the surface tempera-
ture cannot be prescribed if it is variable.

* The general asymptotic solution of equation (1) is
obtained for any large x and any real p,
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The heat-transfer coefficient is determined
by equation (57) in which the coeflicients
a,, p. 4, and, therefore, the surface temperature
6,(x) are found from the above solution of the
conjugated problem.
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Abstract—It is shown by the solution of a conjugated heat transfer problem that the temperature of the
interface plate-liquid is a non-analytic function of the distance along the plate with the branch points at
x = 0 and co. Hence it follows that an g priori assumption of the interface temperature is impossible and
the ordinary determination of heat transfer, which has been pointed out earlier in [1], is inapplicable.

TRANSPORT DE CHALEUR A PARTIR D’UNE PLAQUE DANS
UN ECOULEMENT GAZEUX COMPRESSIBLE

Résumé—On montre, grice 4 la solution d’un probléme de transport de chaleur conjugué, que la tempéra-

ture de I'interface plaque-liquide est une fonction non-analytique de la distance le long de la plaque avec

des points de branchement a x = 0 et oo, Il s’ensuit donc qu'une hypothése a priori sur la température de

I'interface est impossible et que la détermination habituelle du transport de chaleur, qui a été signalé
auparavant dans [1], est inapplicable.

WARMEUBERGANG VON EINER PLATTE IN EINER KOMPRESSIBLEN
GASSTROMUNG

Zusammenfassmg—Auf Grund der Losung eines konjugierten Wirmeiibergangsproblems wird gezeigt,
dass die Temperatur der Zwischenschicht zwischen Platte und Fliissigkeit eine nicht-analytische Funktion
der Entfernung auf der Platte ist, mit Verzweigungspunkten bei x = 0 und 00. Daraus folgt, dass eine a
priori Annahme fir die Zwischenschichttemperatur unméglich ist und die iibliche Berechnung des
Wirmeiibergangs, wie sie in [1] angedeutet ist, nicht durchgefiihrt werden kann.



